Attention-driven Unsupervised Image Retrieval for Beauty Products with Visual and Textual Clues

Jingwen Hou, Sijie Ji, Annan Wang

School of Computer Science and Engineering Nanyang Technological University

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Background

Beauty and Personal Care Product Retrieval Previous Approaches

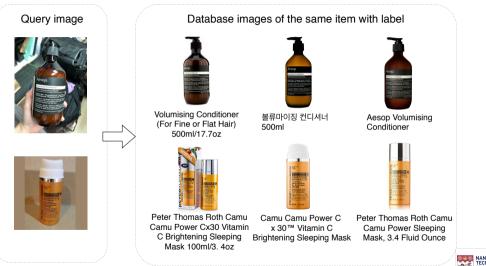
Motivation

Proposed method

Method Overview Initial stage: searching with visual clues Textual Index Refinement Stage: Refine the Initial Result with Textual Index

Background

Beauty and Personal Care Product Retrieval Previous Approaches


Motivation

Proposed method

Method Overview Initial stage: searching with visual clues Textual Index Refinement Stage: Refine the Initial Result with Textual Inde

Beauty and Personal Care Product Retrieval (BPCR)

(a)

Previous Approaches

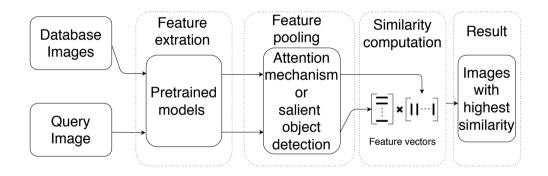


Figure: Common methods of beauty product retrieval problem.

Background

Beauty and Personal Care Product Retrieval Previous Approaches

Motivation

Proposed method

Method Overview Initial stage: searching with visual clues Textual Index Refinement Stage: Refine the Initial Result with Textual Ind

Subtle Visual Difference But Different Items

Some visual differences are subtle but crucial.

Figure: Images of lipsticks with similar packaging, the difference among them is hard to be noticed with non-specialized CNN.

(a)

Problem with CNN: Oversight of Subtle Visual Difference

Figure: Top 1 solution of 2019 challenge. The first 3 matched examples are very accurate. However, obviously false-positive matchings appear in the last 4 examples, implicating the inability of pretrained CNN to capture subtle visual differences.

Textual Information: Key to Tell the Difference

Visual differences neglected by CNN can be captured in product descriptions.

Christian Dior Rouge Dior Couture Colour Voluptuous Care - # 169 Grege 1947 3.5g/0.12oz

C2P Professional Make-Up Lipstick (4.5 g, 28) Christian Dior Rouge Dior Couture Colour Voluptuous Care Lipstick for Women, No. 475 Rose Caprice, 0.12 Ounce

Figure: The aforementioned images of lipsticks with their labels. There are abundant information hard to be captured visually, such as brand in red or the color No. in blue.

Background

Beauty and Personal Care Product Retrieval Previous Approaches

Motivation

Proposed method

Method Overview Initial stage: searching with visual clues Textual Index Refinement Stage: Refine the Initial Result with Textual Index

Method Overview

Query image

Top 7 matched examples before (top) and after (bottom) the proposed refinement

Figure: Search results before (top) and after (bottom) the proposed refinement. The proposed refinement strategy runs a second search within the examples with product descriptions similar to the top 3 matched examples of the first search result and replaces the last 4 matched examples of the first search result with the top 4 matched examples of the second search result.

Initial Stage: Searching with Visual Clues

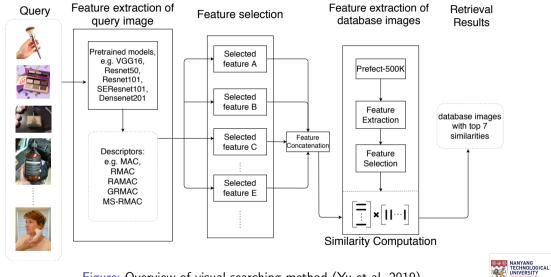


Figure: Overview of visual searching method (Yu et al. 2019).

NIVERSITY

э

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Textual Index

The textual index (TI) is constructed by first vectoring each image label:

$$w_{t,d} = TF_{t,d} \times IDF_t, \quad (1)$$

Then, for each document, find its similar documents by cosine similarity $s_{textual}$ across the collection:

 $s_{textual}(\mathbf{w}_{query}, \mathbf{w}_{data}) = \frac{\mathbf{w}_{query} \cdot \mathbf{w}_{data}}{\|\mathbf{w}_{query}\|_2 \|\mathbf{w}_{data}\|_2}$ (2) n0540

The Textual Index is put into a hash map, whose keys are image IDs and values are lists of image IDs of similar images.

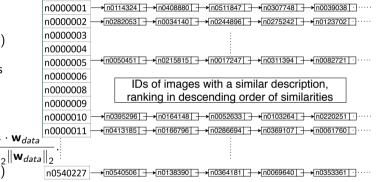


Figure: Part of the hash map of Textual index.

Refinement Stage: Refine the Initial Result with Textual Index

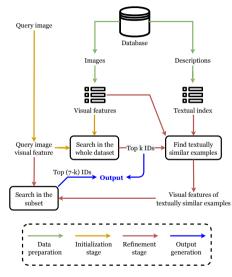


Figure: Overview of the proposed method.

```
Algorithm 1: Two-stage searching
Input : Ouery visual feature \mathbf{v}_{queru}, textual index \mathcal{D}(\cdot),
             database features V_{\mathcal{A}}, parameter k
Output: Matched IDs I_{output} = \{j_m\}_{m=1}^7
I_{aueru,\mathcal{A}} \leftarrow argsortSimilaritiesDscd(\mathbf{v}_{queru}, \mathbf{V}_{\mathcal{A}});
Initialize an empty list I_{subset};
for n \leftarrow 1 to k do
      Add all elements of \mathcal{D}(I_{averu}^n) to I_{subset};
end
\mathbf{V}_{subset} \leftarrow findFeaturesByIDs(\mathcal{I}_{subset}, \mathbf{V}_{\mathcal{A}});
I_{aueru,subset} \leftarrow argsortSimilaritiesDscd(\mathbf{v}_{queru}, \mathbf{V}_{subset});
Initialize an empty list I<sub>output</sub>;
for n \leftarrow 1 to 7 do
      if n \le k then
           Add I_{averu}^n to I_{output}
      else
           Add I_{averu,subset}^{n-k} to I_{output}
      end
end
```

A D F A B F A B F A B F

ъ.

Background

Beauty and Personal Care Product Retrieval Previous Approaches

Motivation

Proposed method

Method Overview Initial stage: searching with visual clues Textual Index Refinement Stage: Refine the Initial Result with Textual Inde

Ablation Studies

Method	mAP@7	Improved %	Impaired %
Baseline	0.396944	-	-
Refined, $k=6$	0.397659	3	2
Refined, $k=5$	0.400262	6	2
Refined, $k=4$	0.405986	9	3
Refined, $k=3$	0.407997	11	4
Refined, $k=2$	0.402885	10	8
Refined, $k{=}1$	0.397293	7	6

Table: Results of ablation study on the validation set.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Qualitative Results

Figure: Initial results (left) and refined results (right) when k=3.

Thank You!

Yu, Jun et al. (2019). "Beauty Product Retrieval Based on Regional Maximum Activation of Convolutions with Generalized Attention". In: *Proceedings of the 27th ACM International Conference on Multimedia*, pp. 2553–2557.