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ABSTRACT

Predicting blood glucose levels is fundamental for precise
primary care of type-1 diabetes (T1D) patients. However,
it is challenging to predict glucose levels accurately, not to
mention the early alarm of adverse events (hyperglycemia
and hypoglycemia), namely the minority class. In this pa-
per, we propose BG-BERT, a novel self-supervised learning
framework for blood glucose level prediction. In particu-
lar, BG-BERT incorporates masked autoencoder to capture
rich contextual information of blood glucose records for ac-
curate prediction. More specifically, SMOTE data augmenta-
tion and shrinkage loss are employed to effectively handle ad-
verse events without discrimination. We evaluate BG-BERT
on two benchmark datasets against two state-of-the-art base-
line models. The experimental results highlight the significant
improvements achieved by BG-BERT in glucose level predic-
tion accuracy (measured by RMSE) and sensitivity to adverse
events, with average lifting ratios of 9.5% and 44.9%, respec-
tively.

Index Terms— type-1 diabetes, glucose prediction, self-
supervised learning, hyperglycemia, hypoglycemia

1. INTRODUCTION

Type-1 diabetes (T1D) is a prevalent chronic condition world-
wide, and it is not curable. The only therapy is to maintain
blood glucose levels by injecting an appropriate amount of
insulin [1]. Improper insulin dosages often lead to the occur-
rence of adverse events: notably hyperglycemia (blood glu-
cose levels less than 70mg/dL) and extreme hypoglycemia
(blood glucose levels greater than 250mg/dL). Hypoglycemia
can have an impact on an individual’s electrocardiogram and
may even result in a loss of consciousness [2]. Hyperglycemia
has the potential to cause harm to the ischemic brain and in-
crease the risk of stroke [3]. Therefore, managing blood glu-
cose levels is critical for individuals with T1D who require
long-term self-administration of insulin.

Certain advanced medical devices incorporate Continu-
ous Glucose Monitoring (CGM) capabilities to autonomously
regulate insulin administration and mitigate the occurrence of
adverse events [4]. Recently, blood glucose level prediction

has achieved sensational progress with the development of
deep learning [5, 6]. In particular, with a series of past blood
glucose records (e.g., blood glucose levels, insulin doses,
carbs intake), the neural network model, especially recurrent
neural networks (RNNs), can predict blood glucose levels
on the horizon. For example, DRTF [7] utilizes a fully con-
nected block structure with an RNN to forecast gradually
in each block, and wins the 2020 Blood Glucose Level Pre-
diction Challenge [8]. Based on the architecture of DRTF,
MT-NB-L [9] adds an auxiliary branch to learn blood glu-
cose forecasting and the probability of hypoglycemia events
in a multi-task learning manner, and also achieves promis-
ing results. However, despite the remarkable advancements
in accuracy achieved by the latest deep learning-based so-
lutions for blood glucose prediction, accurately predicting
glucose levels within the adverse event range remains a chal-
lenge. This is primarily attributed to the insufficient modeling
of contextual information in blood glucose records and the
limited availability of blood glucose record data within the
adverse event range. These limitations pose obstacles to the
development of reliable adverse event prediction models.

To address the aforementioned challenge, we propose
BG-BERT, a novel blood glucose prediction framework.
Building on top of BERT [10], BG-BERT harnesses the
power of masked autoencoder mechanism [11] during the
self-supervised learning phase to effectively model contextual
information of blood glucose monitoring data. This enables
the model to understand the interplay between glucose levels
and adjacent data, capturing both fluctuating trends and the
influence of observed data on future readings. Furthermore,
BG-BERT incorporates advanced techniques to specifically
address the issue of limited adverse event-associated blood
glucose monitoring data. In particular, the data augmen-
tation method known as Synthetic Minority Over-sampling
Technique (SMOTE) [12] is employed to create synthe-
sized data for minority adverse events before feeding the data
into the network. A shrinkage loss function [13] is adopted
during the training process to guide the model to predict
glucose levels within adverse events without bias or discrimi-
nation. To assess the performance of BG-BERT, we compare
it against two prevailing baseline models, namely DRTF [7]
and MT-NB-L [9]. The evaluation results substantiate that



BG-BERT achieves significantly higher accuracy in predict-
ing blood glucose levels within the range of adverse events
than the baseline models. BG-BERT is open-sourced here:
https://github.com/aiot-lab/BG-BERT.

2. PROBLEM STATEMENT

The subject of this paper is to predict adverse events for T1D.
We do not consider it as a classification problem but try to
predict the exact blood glucose levels on the horizon. The pre-
dicted glucose levels can both carry the variation trend and the
occurrence of these adverse events, which would benefit the
insulin injection or pumps in clinical applications. The glu-
cose levels to be predicted are determined by historical glu-
cose monitoring data, including glucose levels, carbs intake,
bolus insulin dose, basal insulin rate, etc. Given N previous
glucose monitoring data, denoted as X1:N = [x1, x2, ..., xN ],
the prediction model should be able to precisely estimate the
following blood glucose levels within the target horizon (TH).
In this paper, we use gN+1:N+TH = [gN+1, ..., gN+TH ] to
represent the predicted blood glucose levels. To evaluate the
identification capability for adverse events, we labeled all data
points (gi) with blood glucose levels below 70mg/dL as hy-
poglycemic events and data points above 250mg/dL as severe
hyperglycemic events.

3. METHODOLOGY

Inspired by the success of BERT [10] for NLP tasks, which is
particularly good at extracting and modeling contextual infor-
mation from temporal data, we propose BG-BERT that builds
on top of BERT but is tailored for blood glucose prediction.
The BG-BERT comprises two phases: self-supervised learn-
ing and glucose level predicting, as illustrated in Fig.1. The
masked self-supervised learning phase enables the encoder to
develop a more profound comprehension of the factors influ-
encing glucose levels and their potential future implications.
The acquired representations are used to enhance the subse-
quent glucose level prediction phase.

First, to address imbalanced data and the lack of ad-
verse event samples, we employ the data augmentation tech-
nique known as SMOTE. In particular, the synthetic instances
are generated by combining a specific sample from adverse
events with one of its k nearest neighbors. The calculation
for generating the synthetic object is as follows:

Xs = Xi + r · (Xb − Xi) (1)

where Xs is the synthetic instance, Xi is one sample from
adverse events, and Xb denotes the neighbor sample of Xi.
We apply SMOTE only on training set for data augmentation.

After that, span-mask [14] is implemented to mask the
monitoring data x at selected time stamps. The span-mask se-
lects the mask length in geometric distribution, making the
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Fig. 1. System overview of BG-BERT.

mask positions more continuous. Hence, BG-BERT could
learn the temporal relationship in glucose monitoring data
more effectively. The masked data is then fed into the en-
coder to learn the deep representations R such that:

R = Enc(Xu
m + PE(Xu

m)) (2)

where Enc represents the encoder network, Xu
m denotes the

masked uniform glucose monitoring data, and PE is the po-
sition encoding to make full use of the order information.
Then, the representations will be used to reconstruct the orig-
inal values of the masked glucose data given the equation of
X̂

u
= Dec(R), where X̂

u
denotes the reconstructed glucose

data, and Dec is the decoder network. We only calculate the
reconstruction loss Lrec for the masked samples following the
training strategy of BERT using mean squared error (MSE):

Lrec = MSE(Mask(Xu),Mask(X̂
u
)). (3)

For encoder architecture, we use pre-norm residual unit [15]
to connect multi-head attention layers which can further cap-
ture rich contextual information. In particular, we implement
add-normed multilayer perceptions (MLP) for decoder net-
work design.

In the glucose level predicting phase, we mask the tar-
get horizon in the glucose sequence and feed it into the en-
coder with fixed parameters to generate representations. A
predictor, composed of LSTM, CNN, and MLP modules, is
designed to forecast glucose levels based on the learned fea-
tures R. The LSTM module handles the sequential informa-
tion in the representations, while the CNN module combines
historical and estimated information. Lastly, the MLP module
determines the expected changes in glucose levels. The esti-
mated blood glucose levels ĝ is obtained with ĝ = Pred(R).
We don’t fine-tune the encoder but train the predictor only be-
cause fine-tuning the whole network would achieve almost the



same performance as using representation exclusively. To en-
hance the predictor’s focus on adverse events, we draw inspi-
ration from the focal loss function [16] used for imbalanced
data classification. We amplify large loss values and diminish
small loss values during back-propagation, implementing the
concept of focal loss for regression tasks. We utilize a cus-
tomized shrinkage loss function [13] for glucose level predic-
tion, the formula is given as:

Ls =
||ĝ − g||2

1 + exp(a · (c− ||ĝ − g||2))
(4)

where a and c are hyper-parameters of shrinkage loss.

4. EXPERIMENT SETUP

4.1. Benchmark Dataset

The evaluation is conducted on two benchmark datasets:
OhioT1DM [8] and Diatrend [17]. OhioT1DM contains 8
weeks of data for 12 patients with T1D, making it the most
commonly used dataset for glucose level prediction. Only
3.4% of the readings in OhioT1DM are hypoglycemia events,
while 8.2% are hyperglycemia events. Diatrend is the largest
open-source glucose monitoring dataset, with 27,561 days of
continuous glucose monitoring data from 54 T1D patients.
In Diatrend, the occurrence rate of hypoglycemia is 1.35%,
while hyperglycemia events account for 10.24% of the total
recordings. Both datasets are used with agreements from cor-
responding affiliations. We partition each dataset as 64:16:20
for training, validation, and testing respectively, following
previous works. We set up two sets of experiments, where
the combinations of N and TH are (2-hour, 30-min) and (4-
hour, 60-min) respectively, following previous works [7, 18].
As the continuous glucose monitor records data every five
minutes, the number of N and TH corresponds to (24, 6)
and (48, 12). These settings also have clinical implications
considering the interstitial fluid blood glucose lag time [19]
and insulin onset time [20].

4.2. Baseline Models

We take two state-of-the-art glucose prediction models as
baselines for comparison. DRTF won the 2020 Blood Glu-
cose Level Prediction Challenge [8], and MT-NB-L presents
a multitask learning approach to predict glucose level and
adverse events simultaneously. Both baseline models use a
supervised learning strategy.

4.3. Evaluation Metrics

We evaluate the performance from four perspectives.

• Root Mean Squared Error (RMSE): RMSE measures
the average distance between predicted glucose levels
ĝi and the golden standard data gi, which is given as√∑

i(ĝi − gi)2.

• Temporal Gain (TG): It indicates the amount of average
time gained for early detection of a potential adverse event
using the model. Corresponding to a sampling time ∆t, a
total of N samples, and a L-step ahead prediction horizon,
the calculation procedure is given as:

delay = argmin
i∈[0,L]

1

N − L

N−L∑
k=1

(ĝ(k + i)− g(k))
2 (5)

TG = (L− delay) ·∆t (6)

• Sensitivity: Sensitivity indicates the ability of a test to cor-
rectly identify adverse events.

• Clarke Error Grid [21]: Clarke error grid is used to quan-
tify the risk of using measured or predicted values of blood
glucose for glucose management of diabetic patients.

5. EVALUATION

5.1. Overall Performance Evaluation

We evaluate BG-BERT’s performance compared to baseline
models and analyze the impact of its components through an
ablation study. The evaluation is done on the OhioT1DM and
Diatrend datasets, considering both 30-minute and 60-minute
time horizons. The summarized results are presented in Tab.1.

BG-BERT demonstrates significant improvements com-
pared to the baseline models. For the 30-minute horizon pre-
diction, BG-BERT achieves RMSE results of 14.02 mg/dL
and 14.85 mg/dL on the OhioT1DM and Diatrend datasets,
respectively, surpassing DRTF and MT-NB-L. The self-
supervised learning strategy employed by BG-BERT en-
hances its understanding of glucose variations, leading to
improved average early detection time (TG). Through the
utilization of SMOTE data augmentation and a shrinkage loss
function, BG-BERT exhibits an average increase of 46.4% in
hypoglycemia sensitivity compared to the baseline models,
and a slight improvement in hyperglycemia sensitivity.

BG-BERT demonstrates consistent excellence in pre-
dicting glucose levels over a 60-minute period. It excels in
reducing prediction errors (RMSE) and accurately detecting
hyperglycemia. On average, BG-BERT improves RMSE by
9.5% and significantly enhances hypoglycemia sensitivity
compared to other models.

To further understand the contribution of different com-
ponents in BG-BERT, an ablation study is conducted. By re-
moving data augmentation (w/o aug), we observe a perfor-
mance loss of 4.33% compared to BG-BERT. Additionally,
when shrinkage loss is removed (w/o Ls), the model cannot
handle the accurate prediction of the minority class. These
findings indicate that both SMOTE augmentation and shrink-
age loss contribute to the performance gains of BG-BERT.

Overall, our evaluation results demonstrate the effective-
ness of leveraging BERT-based architectures for blood glu-
cose prediction.



Table 1. Overall performance on two benchmark datasets: (Red: the best performance among all algorithms. Hype Sen and
Hypo Sen indicate the detection sensitivity of hyperglycemia and hypoglycemia respectively.)

Horizon 30 mins 60 mins

Dataset OhioT1DM Diatrend OhioT1DM Diatrend

Metric RMSE
(mg/dL)

TG
(mins)

Hype
Sen(%)

Hypo
Sen(%)

RMSE
(mg/dL)

TG
(mins)

Hype
Sen(%)

Hypo
Sen(%)

RMSE
(mg/dL)

TG
(mins)

Hype
Sen(%)

Hypo
Sen(%)

RMSE
(mg/dL)

TG
(mins)

Hype
Sen(%)

Hypo
Sen(%)

DRTF 18.21 15.54 80.67 53.58 15.23 15.07 80.28 39.12 28.36 28.7 68.89 23.38 26.42 28.17 58.93 16.74

MT-NB-L 21.50 14.74 61.36 34.05 19.80 13.88 75.16 39.89 34.15 26.34 41.65 25.40 25.59 28.72 62.32 12.07

w/o aug 14.38 16.19 81.49 64.41 15.01 16.27 79.53 56.69 23.64 31.14 66.62 48.46 25.22 31.39 62.65 32.49

w/o Ls 13.92 15.72 81.16 70.75 15.13 16.16 80.75 57.42 22.61 30.04 68.31 30.21 25.03 31.03 64.13 31.01

BG-BERT 14.02 16.56 82.54 73.24 14.85 16.47 81.34 62.27 23.67 31.16 69.24 54.12 24.95 31.45 64.53 40.1
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Fig. 2. Clarke error grid analysis on two benchmark datasets.
(A: medically accurate result, B: medically acceptable, C: un-
necessary treatment, D: failure to detect a dangerous condi-
tion, E: mistaking adverse events.)

5.2. Clarke Error Grid Analysis

The present study employs the Clarke error grid analysis
to assess clinical acceptability by comparing predicted val-
ues with golden standard values. Results are summarized in
Fig. 2. The analysis reveals that BG-BERT outperforms the
baseline model on both datasets in regions A and B, indicat-
ing its capability of precisely predicting glucose levels. When
evaluating regions of C, D, and E, which determine the un-
acceptable results, the proportion of BG-BERT’s prediction
results in these regions is consistently lower compared to the
baseline model. This disparity is particularly pronounced in
region E, where BG-BERT’s prediction results account for
0% of the total. The findings indicate that BG-BERT not
only achieves improved prediction accuracy but also boasts a
reduced false alarm rate.

5.3. Glucose Prediction Visualization

Fig. 3 displays the half-day glucose prediction results of BG-
BERT in comparison to the best baseline model (DRTF). It
is evident that BG-BERT accurately anticipates changes in
blood glucose over time, revealing the effectiveness of mas-
tering contextual information through self-supervised learn-
ing. Moreover, the reduced fluctuation highlights the predic-
tion robustness of our proposed method.

Fig. 3. Visualization of half-day glucose prediction. The gray
circles highlight the better performance on turning points.

6. CONCLUSION

This paper introduces BG-BERT, a novel self-supervised
learning framework designed to predict blood glucose lev-
els in patients with T1D. By incorporating a span-mask
mechanism, BG-BERT enhances its understanding of the
relationships between historical and future blood glucose lev-
els, thereby improving prediction accuracy. To address the
issue of imbalanced adverse event samples during the pre-
diction stage, this study introduces two techniques: SMOTE
data augmentation and a shrinkage loss function. The appli-
cation of these techniques yields significant improvements
in adverse event prediction, particularly in detecting hypo-
glycemia alarms, which observe an average progress of 46%
on two benchmark datasets. We believe that BG-BERT has
the potential to contribute to the research community and
introduce new methodologies that advance blood glucose
monitoring for the clinical care of T1D patients.
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