Multiple Transfer Learning and Multilabel Balanced Training Strategies for Facial AU Detection In the Wild

Sijie Ji, Kai Wang, Xiaojiang Peng, Jianfei Yang, Zhaoyang Zeng, and Yu Qiao

Facial Action Units(AU)

AU9

AU20

AU10

AU24

AU17

AU18

AU12

AU15

AU56

Picture from: http://cbcsl.ece.ohio-state.edu/enc-2020/index.html

Challenge: unconstrained heterogeneity of in the wild facial images

Various pose

Various illumination

Various resolution

Different kind of occlusion

Solution: jointly face detection and alignment

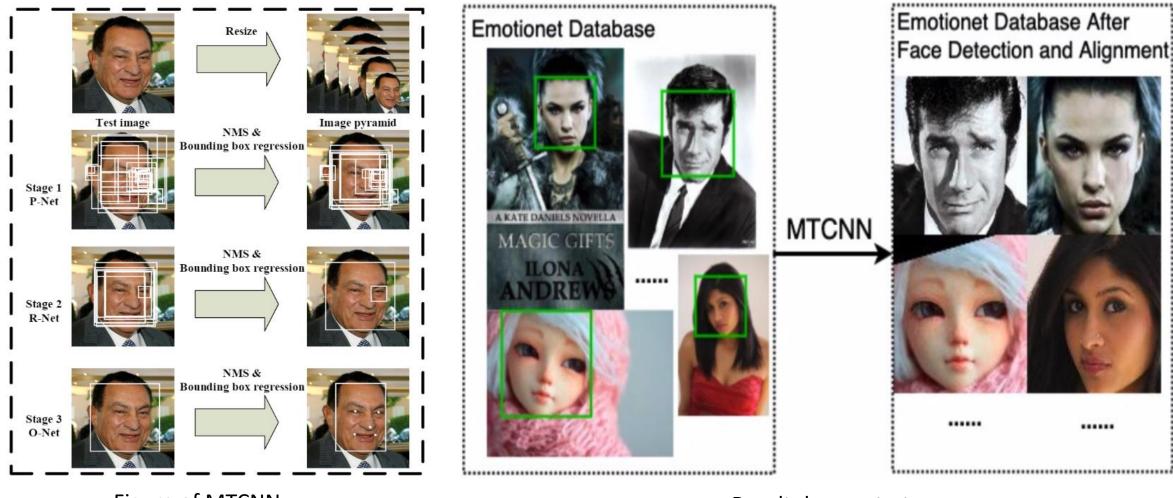


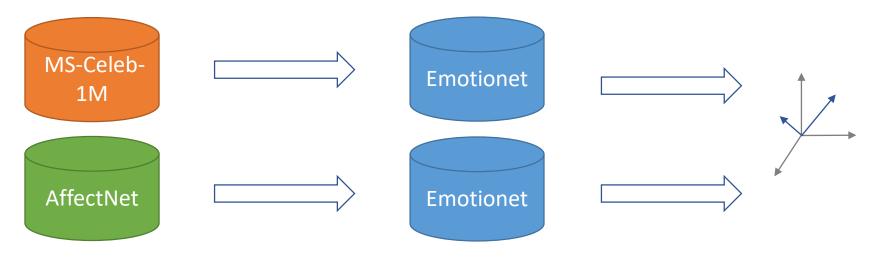
Figure of MTCNN₁

Result demonstrate

Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499–1503.

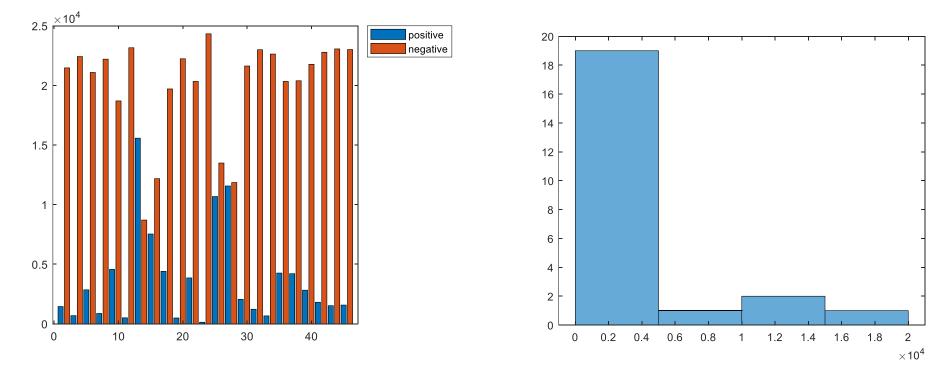
Challenge: discriminative feature learning

• Tiny face muscle change leads to different AU



- Sub-face level changes requires network to learn deep fine-grained representative features
- Lack of labelled data(25K) have a risk of overfitting

Solution: transfer knowledge from multi relevant tasks


Opportunity:

- Most location of AU happens on the face landmark position Transfer knowledge from face recognition task
- Some AU will occur simultaneously to form a specific emotion Transfer knowledge from facial expression recognition task

Challenge: imbalanced AU distribution

- Most of the Action Unit is labeled negative, negative samples are outnumbered positive samples
- Some AU occurs frequently while some occurs seldomly

Solution: multi-label balancing strategies

- Balance Sampling
 Data processing phase
- Selective Learning
 Training phase
- Soft Thresholding
 - Post optimization phase

Results

Table 1	Result on	Preliminary	Backbone	Selection
---------	-----------	-------------	----------	-----------

Backbone	Acc	F1	Avg
ResNet-18	0.901	0.364	0.633
ResNet-50	0.905	0.409	0.657
ResNet-152	0.905	0.474	0.690

Group	Mean Accuracy	F1	Final Score]
TAL	.9147	.5465	.7306	1
University of Magdeburg	.9124	.5478	.7301	1
SIAT-NTU	.9013	.4410	.6711	11
USTC-alibaba	.8609	.3497	.6053	

2020 CHALLENGE

Table 2. Ablation Results			
Method	Acc	F1	Avg
F_face	0.921	0.384	0.652
F_emotion	0.925	0.429	0.677
F_face + F_emotion	0.925	0.494	0.710
Align + F_face + F_emotion	0.927	0.527	0.727
Align + F. face + F.emotion + balancing	0.915	0.552	0.734

2020 VALIDATION TOP-3

Group	Mean Accuracy	F1	Final Score
TAL	.9200	.5720	.7460
University of Magdeburg	.9198	.5706	.7452
SIAT-NTU	.9195	.3531	.6363

Conclusion

- Conduct targeted solution to each challenge
 - Jointly face detection and alignment
 - Multiple Transfer Learning
 - Multi-label balancing strategies
- Our solution demonstrates robustness during three phase of Emotionet Challenge 2020 and achieve the 3rd place

